HOW OFTEN IS A POLYGON BOUNDED BY THREE SIDES?

BY R. C. ENTRINGER AND G. B. PURDY

ABSTRACT

Let L_n be the set of lines (no two parallel) determining an *n*-sided bounded face F in the Euclidean plane. We show that the number, $f(L_n)$, of triples from L_n that determine a triangle containing F satisfies

$$n-2 \leq f(L_n) \leq \frac{n}{6} \left[\frac{n^2-1}{4} \right]$$

and these bounds are best. This result is generalized to *d*-dimensional Euclidean space (without the claim that the upper bound is attainable).

1. Introduction and notation

Let L_n be a set of $n \ge 3$ lines in general position in the Euclidean plane such that some bounded face F determined by L_n is n-sided. We let $f(L_n)$ be the number of triples of lines of L_n that form a triangle containing F and will prove the following result in the third section:

Theorem 1.

$$n-2 \leq f(L_n) \leq \frac{n}{6} \left[\frac{n^2-1}{4} \right]$$

and these bounds are best.

Our proof of this result will involve the consideration of certain properties of a set P of points $p_i, 1 \le i \le m$, in general position on a circle S (no two antipodal). Each pair of distinct points p_i and p_j determine two arcs of S: the "arc $p_i p_j$ " will mean the smaller of these and we refer to the set of all such smaller arcs as "the arcs of P". A triple of points of P not contained in any semicircle of S will be called a *central triple* (since the triangle formed by these points contains the center of S). The point of S antipodal to p_i will be denoted by $p'_i, 1 \le i \le n$. We note that a triple $\{p_i, p_j, p_k\}$ is central iff the arc $p_j p_k$ contains p'_i .

Received December 20, 1981

2. Some properties of points on a circle

LEMMA 1. Let P be a set of points p_i , $1 \le i \le n$, in general position on a circle S.

(i) The union of the arcs of P is S or is contained in a semicircle of S.

(ii) If one point of P is a member of a central triple then each point is.

(iii) If every three points of P are contained in a semicircle of S then they all are.

PROOF. (i) If the union of the arcs of P is not S it is an arc C with endpoints p_i and p_i , say. The arc $p_i p_i$ is either S - C or C; in either case we are done.

(ii) If some point p_i is not a member of any central triple then the antipodal point p'_i cannot lie on any arc of P and so by (i) all points of P lie in a semicircle. But then no point of P is a member of a central triple.

(iii) The point p_i is not a member of a central triple so that p'_i does not lie in any arc of P. By (i) some semicircle of S contains all points of P.

LEMMA 2. Let P_n be a set of points p_i , $1 \le i \le n$, $n \ge 3$, in general position on a circle S and let $g(P_n)$ be the number of central triples of members of P_n . Then, if $g(P_n) > 0$, we have

$$n-2 \leq g(P_n) \leq \frac{n}{6} \left[\frac{n^2-1}{4} \right]$$

and these bounds are best.

PROOF. Let x_i and y_i be the numbers of points $p_i \neq p_i$ in the two semicircles of S with endpoint p_i . Then $x_i + y_i = n - 1$ and the number of triples not central is

$$\binom{n}{3} - g(P_n) = \frac{1}{2} \sum_{i=1}^{n} \left[\binom{x_i}{2} + \binom{y_i}{2} \right] = -\frac{1}{2} \binom{n}{2} + \frac{1}{4} \sum_{i=1}^{n} (x_i^2 + y_i^2)$$

so that

$$g(P_n) \leq {\binom{n}{3}} + \frac{1}{2}{\binom{n}{2}} - \frac{1}{4} \begin{cases} 2n\left(\frac{n-1}{2}\right)^2, & n \text{ odd} \\ \\ n\left(\frac{n^2}{4} + \frac{(n-2)^2}{4}\right), & n \text{ even} \end{cases}$$
$$= \begin{cases} \frac{n(n^2-1)}{24}, & n \text{ odd} \\ \\ \frac{n(n^2-4)}{24}, & n \text{ even} \end{cases} = \frac{n}{6} \left[\frac{n^2-1}{4}\right].$$

POLYGON BOUNDED

We assume $g(P_n) > 0$ and prove $g(P_n) \ge n - 2$ by induction, it being obvious when n = 3. For $n \ge 4$, since P_n contains a central triple, for each $p_i \in P_n$ not in that triple, $P_n - \{p_i\}$ contains the same central triple so that by the inductive hypothesis it contains at least n - 3 central triples. By (ii) of Lemma 1, p_i is also in a central triple so that $g(P_n) \ge n - 2$.

The lower bound may be realized by grouping p_i close to p_1 for $2 \le i \le n-2$ and placing p_{n-1} and p_n near the ends of a diameter normal to the diameter through p_i . The upper bound may be realized by spacing *n* points nearly equally about a circle.

3. Proof of Theorem 1

Let S be any circle in the interior of F and let 0 be its center. Let P_n be the set of points of intersection p_i , $1 \le i \le n$, of S and the rays from 0 normal to the lines l_i of L_n . As F is bounded the points p_i cannot all lie in some semicircle of S since the ray from 0 through the point antipodal to the center of such an arc would not intersect any of the lines of L_n . Consequently $f(L_n) > 0$ and we see that if $\{p_i, p_j, p_k\}$ is a triple of points of P_n corresponding to a triple of lines of L_n that form a triangle containing F then $\{p_i, p_j, p_k\}$ is a central triple. Conversely, if $\{p_i, p_j, p_k\}$ is a central triple then any ray from 0 intersects at least one of the arcs $p_i p_j$, $p_i p_k$ and $p_k p_i$ since, by Lemma 1, their union is S. But a ray intersecting arc $p_i p_j$, for example, also intersects at least one of the lines l_i and l_j . Consequently the triangle formed by l_i , l_j and l_k contains 0 and so F. We conclude that $f(L_n) = g(P_n) > 0$ so that Theorem 1 is a consequence of Lemma 2. The bounds of Theorem 1 are attained by positioning lines tangent to a circle so as to obtain the configurations of points p_i described in the last paragraph of the last section.

4. Generalization to higher dimensions

With appropriate modifications the results of the last two sections generalize to *d*-dimensional Euclidean space E^d , $d \ge 2$. We now let L_n be a set of $n \ge d+1$ hyperplanes in general position in E^d such that some *d*-dimensional cell *F* determined by L_n is *n*-faced. We let $f_d(L_n)$ be the number of (d + 1)-tuples of hyperplanes of L_n that bound a cell containing *F*.

Let S be a d-dimensional hypersphere in the interior of F and, as before, let p_i , $1 \le i \le n$, be the intersection of the ray from the center 0 of S normal to the hyperplane l_i of L_n . Each set P' of d of the points p_i determines a hyperplane and this hyperplane cuts S into two caps the smaller of which is said to be the cap

of S determined by P'. A set of d + 1 of the points of $P = \{p_i \mid 1 \le i \le n\}$ will be called a *central* (d + 1)-tuple iff they are not contained in any hemihypersphere of S.

Lemma 1 and its proof generalize, if the obvious changes are made. In particular in (ii) and (iii) we now speak of (d + 1)-tuples in place of triples.

To generalize Lemma 2 we let $g_d(P_n)$ be the number of central (d + 1)-tuples of members of P_n and for each set P'_j , $1 \le j \le \binom{n}{d-1}$ of d-1 points of P_n we let x_j and y_j be the numbers of points in the hemihyperspheres of S determined by the hyperplane containing 0 and all points of P'_j . We count only those points not in P'_j so that $x_j + y_j = n - d + 1$. Then the number of (d + 1)-tuples not central is

(1)
$$\binom{n}{d+1} - g_d(P_n) \ge \frac{1}{\left[(d+1)^2/4\right]} \sum_{j=1}^k \left[\binom{x_j}{2} + \binom{y_j}{2}\right]$$

since, as we will show, each such (d + 1)-tuple is counted at most $[(d + 1)^2/4]$ times.

A (d + 1)-tuple of points of P_n is counted as a non-central (d + 1)-tuple once for each pair of points of the (d + 1)-tuple that lie on the same side of the hyperplane determined by 0 and the remaining d - 1 points. This is equivalent to counting the faces of the convex hull of a set of d + 1 points in E^{d-1} as may be seen, e.g., by projecting the hemihypersphere onto a hyperplane through its equator. It is known [1, pp. 169, 175] that the number of such faces is at most

$$f_{d-2}(d+1, d-1) = \begin{cases} \frac{d+1}{m} \binom{d-m}{m-1} & \text{for } d-1 = 2m \\ & = [(d+1)^2/4], \\ 2\binom{d-m}{m} & \text{for } d-1 = 2m+1 \end{cases}$$

From (1) we obtain

$$g_{d}(P_{n}) \leq {\binom{n}{d+1}} - \frac{1}{2[(d+1)^{2}/4]} \left\{ \sum_{j=1}^{\binom{n}{d-1}} (x_{j}^{2} + y_{j}^{2}) - {\binom{n}{d-1}} (n-d+1) \right\}$$
$$\leq {\binom{n}{d+1}} + {\binom{n}{d-1}} \frac{(n-d+1)}{2[(d+1)^{2}/4]} - \frac{1}{2[(d+1)^{2}/4]} \cdot \left\{ 2 {\binom{n}{d-1}} \frac{(n-d+1)^{2}}{4}, \quad n-d \text{ odd} \right\}$$
$$\cdot \left\{ {\binom{n}{d-1}} \frac{(n-d)^{2}}{4} + \frac{(n-d+2)^{2}}{4}, \quad n-d \text{ even} \right\}$$

$$= \binom{n}{d+1} - \binom{n}{d-1} \begin{cases} \frac{(n-d)^2 - 1}{4[(d+1)^2/4]}, & n-d \text{ odd} \\ \frac{(n-d)^2}{4[(d+1)^2/4]}, & n-d \text{ even} \end{cases}$$
$$\left\{ \frac{n+1}{(d+1)(n-d+1)}, & n \text{ odd, } d \text{ odd} \end{cases}$$

$$= \binom{n}{d+1} \begin{cases} \frac{n+1}{(d+1)(n-d)}, & n \text{ odd, } d \text{ even} \\ \frac{n}{(d+1)(n-d)}, & n \text{ even, } d \text{ odd} \\ \frac{n+2}{(d+2)(n-d+1)}, & n \text{ even, } d \text{ even} \end{cases}$$

The proof that $g_d(P_n) \ge n - d$ and that this bound is attained for $d \ge 3$ parallels that for the case d = 2 and is omitted.

If we denote by $f_d(L_n)$ the function analogous to $f(L_n)$ in E^d we argue as before that $f_d(L_n) = g_d(P_n)$.

Configurations of *n* hyperplanes in E^d for which $f_d(L_n) = n - d$ can be constructed as described for the case d = 2. However, we don't know whether the upper bound for $f_d(L_n)$ implied by (1) can be improved and we leave this as an open problem.

REFERENCE

1. B. Grünbaum, Convex Polytopes, Interscience, New York, 1967.

UNIVERSITY OF NEW MEXICO ALBUQUEROUE, NM 87131 USA

TEXAS A & M UNIVERSITY COLLEGE STATION, TX 77843 USA