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HOW OFTEN IS A POLYGON B O U N D E D  
BY THREE SIDES? 

BY 

R. C. ENTRINGER AND G. B. PURDY 

ABSTRACT 

Let L. be the set of lines (no two parallel) determining an n-sided bounded face 
F in the Euclidean plane. We show that the number, f(L.), of triples from L, 
that determine a triangle containing F satisfies 

n -2  =f (L . )=  6 

and these bounds are best. This result is generalized to d-dimensional Eucli- 
dean space (without the claim that the upper bound is attainable). 

I. Introduction and notation 

Let L. be a set of n -_> 3 lines in general position in the Eucl idean plane such 

that some bounded  face F de termined  by L~ is n-sided. We let f ( L . )  be the 

number  of triples of lines of L. that form a triangle containing F and will prove 

the following result in the third section: 

THF.OREM 1. 

n - 2 < - f ( L , ) < = n  [n ' -41  - -  

and these bounds are best. 

Our  proof  of this result will involve the considerat ion of certain properties of a 

set P of points p~. I -<_ i =< m, in general position on a circle S (no two antipodal).  

Each pair of distinct points p, and pj determine two arcs of S : the "arc  p~pj'" will 

mean the smaller of these and we refer to the set of all such smaller arcs as " the  

arcs of P" .  A triple of points of P not contained in any semicircle of S will be 

called a central triple (since the triangle formed by these points contains the 

center  of S). The point of S antipodal to p~ will be denoted  by p', 1 <-_ i <- n. We 

note that a triple {p,.p,,pk} is central ifl the arc pjpk contains p',. 
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2. Some properties of points on a circle 

LEMMA I. Let P be a set of points p,, 1 <= i <-_ n, in general position on a circle S. 

(i) The union of the arcs of P is S or is contained in a semicircle of S. 

(ii) If one point of P is a member of a central triple then each point is. 

(iii) If every three points of P are contained in a semicircle of S then they all are. 

PROOF. (i) If the union of the arcs of P is not S it is an arc C with endpoin ts  p, 

and p,, say. The  arcp,pj is e i ther  S -  C or C;  in e i ther  case we are done.  

(ii) If some point p, is not a m e m b e r  of any central  triple then the ant ipodal  

point p'~ cannot  lie on any arc of P and so by (i) all points of P lie in a semicircle.  

But then no point of P is a m e m b e r  of a central  triple. 

(iii) The  point p, is not a m e m b e r  of a central  triple so that p'~ does not lie in 

any arc of P. By (i) some semicircle of S contains all points  of P. 

LEMMA 2. Let P, be a set of points pi, 1 <-_ i <= n, n >= 3, in general position on a 

circle S and let g(P,)  be the number of central triples of members of P,. Then, if 

g ( P , ) > 0 ,  we have 

n - 2  =< g ( P . ) =  6 

and these bounds are best. 

PROOF. Let x~ and y, be the numbers  of points  pj,~ p~ in the two semicircles 

of S with endpoin t  p,. Then  x~ + y~ = n - 1 and the n u m b e r  of triples not central  

is 

so that 

1(./ 
= 3 + 2  2 - 4  

2n ( ~ - ~ )  -" , n o d d  

n ( 4 + ( n 4 2 ) :  ) ,  n even 

n( -'- t 
4 1 )  n o d d  

n ( n - ' - 4 )  
24 n even 

=6I 1 
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We assume g(P,) > 0 and prove g(P, ) _-> n - 2 by induction, it being obvious 

when n = 3. For n ~> 4, since P,. contains a central triple, for each p, G P, not in 

that triple, P , - { p , }  contains the same central triple so that by the inductive 

hypothesis it contains at least n - 3 central triples. By (ii) of Lemma 1, p~ is also 

in a central triple so that g(P, , )_>-n-2.  

The lower bound may be realized by grouping p~ close to p, for 2 =< i =< n - 2 

and placing p,_. and p, near the ends of a diameter normal to the diameter 

through p~. The upper bound may be realized by spacing n points nearly equally 

about a circle. 

3. Proof of Theorem I 

Let S be any circle in the interior of F and let 0 be its center. Let P, be the set 

of points of intersection p~, 1 -_< i =< n, of S and the rays from 0 normal to the lines 

l, of L,. As F is bounded the points p, cannot all lie in some semicircle of S since 

the ray from 0 through the point antipodal to the center of such an arc would not 

intersect any of the lines of L,. Consequently f ( L . ) > 0  and we see that if 

{P~,Pi,Pk} is a triple of points of P, corresponding to a triple of lines of L, that 

form a triangle containing F then {p,,pj,pk} is a central triple. Conversely, if 

{p,, p,, pk } is a central triple then any ray from 0 intersects at least one of the arcs 

P,P,, psPk and Pkp, since, by Lemma 1, their union is S. But a ray intersecting arc 

p,p,, for example, also intersects at least one of the lines l, and l,. Consequently 

the triangle formed by L, lj and lk contains 0 and so F. We conclude that 

f (L,  ) = g(P. ) > 0 so that Theorem 1 is a consequence of Lemma 2. The bounds 

of Theorem 1 are attained by positioning lines tangent to a circle so as to obtain 

the configurations of points p, described in the last paragraph of the last section. 

4. Generalization to higher dimensions 

With appropriate modifications the results of the last two sections generalize 

to d-dimensional Euclidean space E d, d => 2. We now let L, be a set of n => d + 1 

hyperplanes in general position in E d such that some d-dimensional cell F 

determined by L. is n-faced. We let fd(L.)  be the number of (d + 1)-tuples of 

hyperplanes of L, that bound a cell containing F. 

Let S be a d-dimensional hypersphere in the interior of F and, as before, let 

p,, 1 _-< i =< n, be the intersection of the ray from the center 0 of S normal to the 

hyperplane l~ of L,. Each set P '  of d of the points p~ determines a hyperplane 

and this hyperplane cuts S into two caps the smaller of which is said to be the cap 
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o[S determined by P'. A set of d + 1 of the points of P = {p~ [ 1 =< i =< n} will be 

called a central (d + 1)-tuple iff they are not contained in any hemihypersphere 

of S. 

Lemma 1 and its proof generalize, if the obvious changes are made. In 

particular in (ii) and (iii) we now speak of (d + 1)-tuples in place of triples. 

To generalize Lemma 2 we let gd (P,) be the number of central (d + 1)-tuples 

of members of P. and for each set P',, 1 _-< j =< G~_,) of d - 1 points of P. we let xj 

and yj be the numbers of points in the hemihyperspheres of S determined by the 

hyperplane containing 0 and all points of P'i. We count only those points not in 

P~ so that xj + yj = n - d + 1. Then the number of (d + 1)-tuples not central is 

(1) 
n 1 k 

(d+ 1)-gn(P")>=[(d+ 1)2/4] ,_-~ [ ( J )  + (YJ)] 

since, as we will show, each such (d + 1)-tuple is counted at most [(d + 1)2/4] 

times. 

A (d + 1)-tuple of points of it', is counted as a non-central (d + 1)-tuple once 

for each pair of points of the (d + 1)-tuple that lie on the same side of the 

hyperplane determined by 0 and the remaining d - 1 points. This is equivalent to 

counting the faces of the convex hull of a set of d + 1 points in E ~-~ as may be 

seen, e.g., by projecting the hemihypersphere onto a hyperplane through its 

equator. It is known [1, pp. 169, 175] that the number of such faces is at most 

d - m  

f~-2(d + 1, d - 1) = 

From (1) we obtain 

(n) n d+l/ 
= d + l  + d - 1  2[(d+1)2/4] 

for d - 1 = 2m 

f o r d - l = 2 m + l  

1 (x~+  y ~ ) -  n (n - d + 1) 
2[(d + 1)2/4] t j=, d - 1 

1 
2[(d + 1)2/4] " 

= [(d + 1)2/4]. 

t( n (n-d +1) 2 2 ( d - l )  4 ' n - d  odd 

) ((n - d)2+ (n - d + 2f -) 
d n l  4 4 , n - d  even 
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(n - d )  2 - , I  n - d odd 
4[(d + 1)2/4] ' 

(n - dy 
4 [ (d  + 1)2/4] ' n - d even  

=(d n+ I )  

n + l  
(a + l)(n - d I)' 

n+l 
(d + 1)(n d) 

t n 
(d + l ) (n  - d ) '  

n + 2  
( d u  

n odd,  d odd 

n odd,  d even 

n even,  d odd 

n even,  d even  

"[he p roof  that  g~(P.)>= n-d  and that  this bound  is a t ta ined for  d_>-3 

parallels that  for the case d = 2 and is omit ted.  

If we denote  by f~(L.) the funct ion analogous  to f(L.) in E ~ we argue as 

before  that  fd (L . )  = g~ (P.) .  

Configurat ions of n hyperp lanes  in E ~ for which fd(L.)=n-d can be 

constructed as descr ibed for  the case d = 2. Howeve r ,  we don ' t  know whether  

the upper  bound  for [d (L . )  implied by (1) can be improved  and we leave this as 

an open  problem.  
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